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Abstract. We study the scaling of the 3S1-
1S0 meson mass splitting and the pseudoscalar weak-decay

constants with the mass of the meson, as seen in the available experimental data. We use an effective
light-front QCD-inspired dynamical model regulated at short distances to describe the valence component
of the pseudoscalar mesons. The experimentally known values of the mass splitting, decay constants (from
global lattice-QCD averages) and the pion charge form factor up to 4 [GeV/c]2 are reasonably described
by the model.

PACS. 12.39.Ki Relativistic quark model – 13.20.-v Leptonic, semileptonic, and radiative decays of mesons
– 14.40.-n Mesons

1 Introduction

The structure of light-front hadronic wave functions in
terms of constituent quarks has been investigated since it
were first formulated in 1976 [1,2], when still Quantum
Chromodynamics was in its infancy. After these seminal
works, light-front phenomenology has been turned into a
lively field of research (see, for instance, the recent re-
view [3]).

One important aspect in the light-front phenomenol-
ogy is the hadronic structure viewed through effective the-
ories inspired by Quantum Chromodynamics [3–8]. This
can shed light on the investigation of the interaction be-
tween the hadron constituents and on the study of the
transition from effective to fundamental degrees of free-
dom, that should be revealed at large momentum scales.

The effective light-front QCD model is expressed
through a square mass operator acting on the valence
component of the hadron wave function. The effective in-
teraction embeds, in principle, all the complexity of QCD
through the coupling of the valence state with higher Fock
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states, reduced to the valence sector [7]. The effective
square mass operator depends on few physical parame-
ters: the constituent-quark masses, the effective quark-
gluon coupling entering in the Coulomb-like interaction
and the strength of the short-range hyperfine interaction,
fixed by the pion mass [8].

Let us discuss the relation of the model to QCD. The
basic aspect of QCD beyond the general features of quark
degrees of freedom is the coupling between the |qq〉 and the
three-particle |qqg〉 Fock component of the wave function
which has one gluon and a quark-antiquark pair and gives
rise to the one-gluon exchange interaction. The Fock space
coupled-channel eigenvalue equation for the square mass
operator written in a compact form is M2|Ψ〉 = M2

h |Ψ〉,
where schematically |Ψ〉 = |ψqq〉 + |ψqqg〉 + · · · is the de-
composition of the meson wave function in Fock compo-
nents. The projection operator on the valence sector is
P (P |Ψ〉 = |ψqq〉) and Q = 1 − P . The reduction of the
square mass eigenvalue equation to the valence sector is
given by

[
PM2P + PM2Q

1

M2
h −M2

QM2P

]
|ψqq〉 =M2

h |ψqq〉,
(1)

where one identifies the effective interaction as the sec-
ond term in the right-hand side of the above equation.
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The first term in a Fock expansion of the resolvent in the
effective interaction corresponds to the truncation of the
Q-space at the gluon-quark-antiquark sector, which corre-
sponds to the one-gluon exchange contribution. However,
the resolvent in eq. (1) couples the valence sector to all
Fock components (see refs. [3] and [28]), and in our sim-
plified model all this complex physics comes through the
effective quark-gluon coupling constant and the hyperfine
interaction parameters.

Hadronic observables are functions of these parame-
ters and quark masses. A physically sensible model de-
pendence is on the quark masses, which allows to get in-
sight into the limit of heavy quarks. In particular, this
limit is reflected in the weak-decay constant of pseu-
doscalar heavy-light mesons, which in potential models
were found to be ∝ 1/

√
mQ [9] (mQ is the heavy quark

mass). Also, this scaling property has been shown in a
light-front constituent-quark model [10]. (We do not in-
tend to be complete in our references.)

The weak-decay constant is closely related to the
physics at small distances contained in the valence compo-
nent of the pseudoscalar meson light-front wave function.
It constitutes an important source of information on the
short-range part of the quark-antiquark interaction. Ex-
perimental values for the weak-decay constants are known
for the pion, kaon, D+ and D+

s [11]. The dependence of
the effective theory in their few parameters can be trans-
lated into correlations between observables of a particular
hadron or among different hadrons. Therefore, it is possi-
ble to indicate relevant relations between physical quan-
tities that otherwise would have no simple reason to ex-
hibit a close dependence, besides being properties of the
same basic theory. For example, in the recent review [12]
of the application of Dyson-Schwinger equations to QCD,
systematic correlations between different meson proper-
ties with mass scales were shown, which were also useful
to compare the pseudoscalar decay constants with results
from Lattice QCD.

The experimental values of the mass splitting between
the ground states of pseudoscalars and vector mesons
present a systematic dependence with the corresponding
pseudoscalar mass, which is well described by the effective
QCD theory even without confinement [8]. The mass split-
ting is associated with the binding energy of the quark-
antiquark pair in the meson, as that model lack a confining
interaction. (It is worthwhile to note that the model ac-
count for the binding energy of the spin-1/2 ground-state
baryons containing two light and one heavy quarks [13]).

In ref. [14] it was pointed out that fps should scale
with the sum of the constituent-quark masses, and more
recently in the context of a light-front QCD-inspired
model it was found that fps scales with the vector meson
mass [15]. In the light-front QCD-inspired model, with-
out a short-range regulator, the dominance of the asymp-
totic wave function [15] was assumed. Both frameworks
assume that the log-type singularity in the matrix ele-
ment of the axial current between the vacuum and the
meson state is fixed by the pion decay constant fπ. In
these approaches, the weak-decay constant depends di-

rectly on the constituent masses and on the short-distance
component of the valence part of the light-front meson
wave function which is parameterized by fπ. Although the
experimental results for light mesons up to D [11] sug-
gest such an increase, relativistic constituent-quark mod-
els in the heavy-quark limit (see refs. [9,10]) and numer-
ical simulations with quenched lattice-QCD [16] indicate
that fD > fB [16]. This is still maintained with two flavor
sea quarks [16,17] and in the most recent global average
of lattice results [18]. This behavior of the weak-decay
constants of the heavy-light pseudoscalars is also found
in a Dyson-Schwinger formalism applied to QCD, where
general arguments say that in the heavy quark limit fps
should be ∝ 1/

√
Mps [19] (Mps is the pseudoscalar mass).

In order to study the mass dependence of the weak-decay
constant we can attempt to use a regulated form of the
light-front constituent-quark QCD-inspired model [5,6,8].
In this case, the systematical investigation of the mass
dependence of meson observables can be easily performed
as the masses of constituent quarks act as model param-
eters, which can be varied while the effective quark-gluon
coupling entering in the Coulomb-like interaction is flavor
independent.

The short-distance interaction between the constituent
quarks in the square mass operator equation of the effec-
tive light-front QCD theory [8], if regulated, allows a finite
result for the decay constant and electromagnetic form
factor. In this case, the eigenstate of the effective mass
operator, i.e., the valence component of the light-front
wave function, would decrease faster than p−2

⊥
for large

transverse momentum, which is enough to make finite the
one-loop integration in the weak-decay constant and form
factor. One can get some information on the short-distance
behavior of the valence component of the pseudoscalar
meson from the electromagnetic form factor, which is ex-
perimentally well known for the pion (see ref. [20]), while
for the kaon data exists below 0.15 (GeV/c)2 [21,22]. In
particular, when the asymptotic wave function is assumed
for the soft-pion limit, its radius and decay constant are
related by

√
〈r2π〉 =

√
3/(2πfπ) [23–25].

Our aim in this work is to study systematically the
mass dependence of the pseudoscalar weak-decay con-
stant, the electromagnetic form factor and the mass split-
ting between the ground states of pseudoscalar and vec-
tor mesons, using a light-front QCD-inspired model reg-
ulated at short distances. We choose the regulator in a
separable form to simplify the formalism. The effective
mass operator equation for the valence component of a
constituent quark-antiquark bound system was derived in
the effective one-gluon exchange interaction approxima-
tion [3] and simplified in refs. [5,6]. The square mass op-
erator includes a Coulomb-like and a Dirac-delta hyperfine
interaction acting on the spin singlet state responsible for
the mass separation between pseudoscalar and the vector
meson states. Here, we extend the model by introducing
a regulator in a separable form in the singular part of the
interaction. Then, the eigenvalue equation for the effective
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square mass operator is written as

M2
psψ(x,

~k⊥) =M2
0ψ(x,

~k⊥)−
∫

dx′d~k′⊥θ(x
′)θ(1− x′)√

x(1− x)x′(1− x′)

×
(
4m1m2

3π2

α

Q2
− λg(M2

0 )g(M
′2
0 )

)
ψ(x′, ~k′⊥), (2)

m1 and m2 are the constituent-quark masses. We have
omitted the subindex qq of |ψ〉. The free square mass op-
erator in the meson rest frame is

M2
0 =

~k2
⊥
+m2

1

x
+
~k2
⊥
+m2

2

1− x ; (3)

andM ′2
0 has primed momentum arguments. The form fac-

tor of the separable regulator function is g(M 2
0 ). The mean

four-momentum transfer is Q2, which is approximated by

a rotationally invariant form Q2 = |~k−~k′|2. The strength
of the Coulomb-like potential is proportional to α and
the coupling constant of the regulated Dirac-delta hyper-
fine interaction is given by λ. Note that for g(M 2

0 ) ≡ 1,
the original unregulated form of the model presented in
refs. [5,6] is retrieved. (In refs. [5] and [26] a local Yukawa
potential for the regularization of the contact interaction
was used, here we use a separable form for simplicity.)

The dependence of the form factor in terms of M 2
0 ap-

pears to be natural in a light-front theory, in which the
virtuality of an intermediate state is measured by the value
of the corresponding free square mass. In the rest frame of
the quark-antiquark pairM 2

0 = P−0 P+ and therefore pro-
portional to the free value of P−0 —the minus component
of the free momentum (P±0 = P 0

0 ± P 3
0 ).

Although a more developed form of the model is known
which contains the explicit confinement [27], we will be
content with solving eq. (2) which is enough for our
purpose of studying only the ground state. In practice,
from the solution of eq. (2), the constituents quarks are
bound and, in that sense, confined in the interior of the
mesons [8].

The present light-front model is a drastic approxima-
tion to a severe truncation of the Fock space in the ef-
fective theory. In the initial truncation of QCD only one-
gluon exchange was kept, which includes Fock states with
up to qq plus one gluon, leaving out the complex nonlin-
ear structure of QCD [3,7] which appears only through
the model parameters. The spin dependence and momen-
tum dependence in the hyperfine interaction are greatly
simplified to get eq. (2) (with g(M 2) = 1) and confine-
ment is absent in the model. Therefore, the success of the
model should be understood as a useful guide in the inves-
tigation of mesonic properties which present a systematic
behavior that depends only on few basic quantities that
are parameterized in the effective theory.

This work is organized as follows. In sect. 2 the QCD-
inspired model is transformed into the instant form repre-
sentation and the eigenvalue equation for the square mass
operator is solved. The valence component of the meson
wave function is derived. In sect. 3 we give the formulae
for the electromagnetic form factor and weak-decay con-
stant derived from an effective pseudoscalar Lagrangian

used to construct the spin part of the pseudoscalar me-
son wave function. In sect. 4 we present and discuss the
results obtained with the regularized model for the mass
splitting between the pseudoscalar and vector mesons, the
weak-decay constants and the pion and kaon form factors.
Also, in sect. 4 we summarize our conclusions.

2 The QCD-inspired model in instant form

representation

The effective square mass operator equation for the low-
est light-front Fock state component of a bound system of
a constituent quark and antiquark is rewritten in terms
of the instant form momentum. Here we follow closely
ref. [8]. The general transformation from the light-cone
momentum to three-momentum was derived in ref. [4].
The form of eq. (2) in the instant form momentum basis
is particularly simple and convenient for the numerical so-
lution when the momentum carried by the effective gluon
is approximated by a rotational invariant form. The mo-
mentum fraction is transformed into

x(kz) =
(E1 + kz)

E1 + E2
, (4)

with ~k⊥ unchanged. The individual energies are Ei =√
m2

i + k2 (i = 1, 2) and k ≡ |~k|. The Jacobian of the

transformation (x,~k⊥) to ~k is

dxd~k⊥ =
x(1− x)
mrA(k)

d~k, (5)

where the dimensionless phase-space function is given by

A(k) =
1

mr

E1E2

E1 + E2
(6)

and the reduced mass is mr = m1m2/(m1 +m2).
Using the momentum transformation defined above,

the eigenvalue equation (2), written in the instant form
momentum basis, is

M2
psϕ(

~k) =M2
0ϕ(

~k) −
∫

d~k′

(
4ms

3π2

α√
A(k)A(k′)Q2

− λ g(M2
0 ) g(M

′2
0 )

mr

√
A(k)A(k′)

)
ϕ(~k′), (7)

where ms = m1 + m2, M0 = E1 + E2 and M ′
0 has the

primed momentum arguments. The phase-space factor is
included in the factor 1/

√
A(k)A(k′).

The valence component of the light-front wave function
is

ψ(x,~k⊥) =

√
A(k)

x(1− x)ϕ(
~k). (8)

The higher Fock state components of the light-front wave
function of the composite system can be expressed in
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terms of the lower ones, as shown by the method of the
iterated resolvents [6] (presented in greater detail in [7])
and by a quasi-potential expansion on the light-front of
the Bethe-Salpeter equation [28]. Therefore, it is possible
to reconstruct recursively all the Fock state components
of the wave function from the valence component. In this
way, the full complexity of a quantum field theory can
in principle be described by a light-front effective Hamil-
tonian acting in the lowest Fock state component of a
composite system.

2.1 Meson valence wave function

To easily manipulate and solve eq. (7), it is convenient to
work with the operator representation

(
M2

0 + V + V δ
)
|ϕ〉 =M2|ϕ〉. (9)

The matrix elements of the Coulomb-like potential V are
given by

〈~k|V |~k′〉 = −4ms

3π2

α√
A(k)Q2

√
A(k′)

, (10)

and for the short-range regularized singular interaction
one has

〈~k|V δ|~k′〉 = 〈~k|χ〉 λ
mr

〈χ|~k′〉 = λ

mr

g(M2
0 )√

A(k)

g(M ′2
0 )√

A(k′)
. (11)

Just for convenience we kept the same superscript δ in the
short-range part of the interaction as in ref. [8], although
it is regulated here. We introduce a form factor defined by

〈~k|χ〉 = g(M2
0 )/
√
A(k), which now includes the regulator.

The eigenstate of the square mass operator (9) is triv-
ially given by

|ϕ〉 = GV (M2
ps)|χ〉, (12)

where GV (M2
ps) =

[
M2

ps −M2
0 − V

]−1
is the resolvent of

the operator M2
0 + V . The characteristic equation for the

eigenvalue of the square mass operator is

λ−1 =
1

mr

〈χ|GV (M2
ps)|χ〉

=
1

mr

∫
d~k

∫
d~k′

g(M2
0 )√

A(k)
〈~k|GV (M2

ps)|~k′〉
g(M ′2

0 )√
A(k′)

. (13)

We have not yet defined λ in eq. (13). To do that, we first
recall the characteristic equation of the renormalized the-
ory with the singular hyperfine interaction (g(M 2

0 ) = 1).
The bare coupling constant is obtained from the value of
the pion mass and substituted in the characteristic equa-
tion which gives the mass of the pseudoscalars. Then, the
characteristic equation appears in a subtracted form, in
which the divergence in the momentum integration is re-

moved [8]:

[
1

mr

∫
d~k

∫
d~k′

1√
A(k)

〈~k|GV (M2
π)|~k′〉

1√
A(k′)

]

(mu,mu)

−
[
1

mr

∫
d~k

∫
d~k′

1√
A(k)

〈~k|GV (M2
ps)|~k′〉

1√
A(k′)

]

(m1,m2)

=0,

(14)

where mu(u) is the mass of the light constituent quark.
Observe that the physical information contained in the
pion wave function at short distances is carried to any
other quark-antiquark system in eq. (14) by the operator

Oπ(M
2
π) :=


 1

mr

1√
A(k̂)

GV (M2
π)

1√
A(k̂)




(mu,mu)

,

(15)
which has its matrix element evaluated at the origin
in (14). The hat indicates the operator quality.

In the case of the present regulated model we define
for each meson a value of λ assuming that the form factor
g(M2

0 ) selects the relevant momentum region of the inter-
acting quarks, or the relevant region of virtuality of the
quark-antiquark pair, within the particular meson. Thus,
the matrix element of the operatorO(M 2

π) should be taken
between states defined by the function g(M 2

0 ). Introducing
the operator Ops(M

2
ps) for a general pseudoscalar meson,

which has expression analogous to eq. (15), one has

Ops(M
2
ps) :=


 1

mr

1√
A(k̂)

GV (M2
ps)

1√
A(k̂)




(m1,m2)

.

(16)
Then, using the operators defined in eqs. (15) and (16), it
is reasonable to generalize eq. (14) to the following form:

ps〈g|Oπ(M
2
π)−Ops(M

2
ps)|g〉ps = 0, (17)

where 〈~k|g〉ps := g(M2
0 ) with M0 =

√
k2 +m2

1 +√
k2 +m2

2. The strength of the short-range interaction for
each pseudoscalar meson is determined by the pion mass
and the regulator form factor according to

λ−1
ps = ps〈g|Oπ(M

2
π)|g〉ps. (18)

The short-range part of the interaction parameterizes con-
tributions from Fock components with high virtuality in
the decomposition of the resolvent in eq. (1), which are im-
portant to bind strongly the quark-antiquark pair to form
the pion. Otherwise, if one resorts only to the perturbative
one-gluon exchange, the complex nonperturbative mech-
anism responsible for the pion formation as a Goldstone
boson is washed out.



L.A.M. Salcedo et al.: Electromagnetic structure and weak decay of pseudoscalar mesons . . . 217

In the three-momentum basis eq. (17) reads

∫
d~k

∫
d~k′g(M2

0 )

×



[

1

mr

1√
A(k)

〈~k|GV (M2
π)|~k′〉

1√
A(k′)

]

(mu,mu)

−
[

1

mr

1√
A(k)

〈~k|GV (M2
ps)|~k′〉

1√
A(k′)

]

(m1,m2)




×g(M ′2
0 ) = 0, (19)

where M2
0 and M ′2

0 are computed for the quarks with
masses m1 and m2.

In our calculation procedure, the resolvent is numeri-
cally obtained from

GV (M2
ps)=G0(M

2
ps) +G0(M

2
ps)T

V (M2
ps)G0(M

2
ps), (20)

where the T -matrix is the solution of the Lippman-
Schwinger equation:

TV (M2
ps) = V + V G0(M

2
ps)T

V (M2
ps), (21)

where the free resolvent is G0(M
2
ps) = [M2

ps−M2
0 ]
−1. The

detailed expressions can be found in ref. [8].

The valence component of the light-front wave function
of the meson is the solution of eq. (2) given by eq. (12).
By using eq. (20), we can write the valence wave function
as

ψ(x,~k⊥) =
1√

x(1− x)
Gps

M2
ps −M2

0

×
[
g(M2

0 ) +

∫
d~k′

√
A(k)

A(k′)
〈~k|TV (M2

ps)|~k′〉g(M ′2
0 )

]
, (22)

where the overall normalization factor of the qq Fock com-
ponent of the meson wave function is Gps. The three-
momemtum is expressed in terms of the light-cone mo-
mentum with the transformation (4). The first term in
eq. (22) dominates at large momentum if g(M 2

0 ) = 1 (cor-
responding to the asymptotic form), differently from this
situation, when g(M2

0 ) 6= 1, the two terms can compete
even in the asymptotic region.

2.2 Constituent-quark masses and mass splittings

Within the present model, the low-lying vector mesons
are weakly bound systems of constituent quarks while the
pseudoscalars are strongly bound. Therefore in this model,
the masses of the constituent quarks are obtained directly

from the vector meson masses, as [13]

mu =
1

2
Mρ = 384MeV,

ms = MK∗ − 1

2
Mρ = 508MeV,

mc = MD∗ − 1

2
Mρ = 1623MeV,

mb = MB∗ − 1

2
Mρ = 4941MeV, (23)

where the masses of the vector mesons are 768MeV,
892MeV, 2007MeV and 5325MeV for the ρ, K∗, D∗ and
B∗, respectively [11]. The constituent masses for the up
and down quarks are considered equal (we disregarded
the small few MeV difference in the current up and down
masses [11]). Using the value of the light-constituent-
quark mass of 384MeV and assuming that the effect of
chiral symmetry breaking is about the same for each fla-
vor, one gets an estimate of the current quark mass as
mcurr

Q = mQ − mu [13]. The current quark masses are
estimated as mcurr

s = 124MeV, mcurr
c = 1239MeV and

mcurr
b = 4557MeV consistent with ref. [11].
In our model, the binding energy of the constituent

quarks in the pseudoscalar mesons, is interpreted as the
1S0-

3S1 meson mass splitting, and thus a quantity di-
rectly related to data. The binding energy is simply Bps =
Mv−Mps defined to be positive. The experimental values
for the ground-state quantities show evidence for a strong
correlation of Bps and Mps qualitatively reproduced by
the renormalized model with singular interaction [8]. We
will see in sect. 4 that eq. (17) also provides a reasonable
description of the mass splitting.

3 Electromagnetic form factor and weak-decay

constant

To obtain the electromagnetic form factor and the pseu-
doscalar decay constant, we follow the suggestion of
refs. [25,29]. To construct such observables, one describe
the coupling of the pseudoscalar meson field (Φps(~x)) to
the quark fields (q1(~x) and q2(~x)) by an effective La-
grangian density with a pseudoscalar coupling of the quark
fields:

Leff (~x) = −iΓpsΦps(~x) q1(~x)γ5q2(~x) + h.c., (24)

where Γps is a constant vertex. After the integration in the
minus momentum component of the momentum integra-
tion of the one-loop amplitudes that define the electromag-
netic form factor and weak-decay constant, the asymptotic
form of the wave function is substituted by the valence
component of the model wave function. The integration in
the minus momentum component eliminates the relative
time between the quarks in the intermediate states [28].

3.1 Form factor of pseudoscalar mesons

The pseudoscalar meson electromagnetic form factor is ob-
tained from the impulse approximation of the plus com-
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ponent of the current (j+ = j0 + j3) in the Breit frame

with momentum transfer q+ = 0 and q2 = −~q 2 satisfy-
ing the Drell-Yan condition. The general structure of the
qq bound state forming the meson comes from the pseu-
doscalar coupling (24). We use such spin structure in the
computation of the photo-absorption amplitude in the im-
pulse approximation (represented by a Feynman triangle
diagram), which is written as

(pµπ + p′µπ )Fps(q
2) = iΓ 2

pse1Nc

×
∫

d4k

(2π)4
tr

[
/k +m2

k2 −m2
2 + iε

γ5 /k − /p′ +m1

(k − p′)2 −m2
1 + iε

×γµ /k − /p+m1

(k − p)2 −m2
1 + iε

γ5

]
+ [1↔ 2], (25)

where Fps(q
2) is the electromagnetic form factor and ei is

the quark charge. The meson momentum in the initial and

final states are defined by p0 = p′0 and ~p′⊥ = −~p⊥ = ~q⊥
2 .

Nc = 3 is the number of colors.
The choice of the plus component of the current is ad-

equate in the case of pseudoscalars mesons because after
the integration over k− = k0 − k3 the suppression of the
pair diagram is maximal for this component in the frame
where q+ = 0 and just the wave function components
contribute to the form factor [25,29–31]. In our model,
only the valence component is considered. Although we
compute the integration in the minus momentum compo-
nent assuming a constant vertex, one can identify in the
expression how the valence component of the wave func-
tion correspondent to the non-constant vertex of eq. (22)
should be introduced. As the details of this derivation is
by now standard, we present directly the final result:

Fps(q
2) = e1

Nc

(2π)3

∫ 1

0

dx

1− x

∫
d2k⊥

×
[
2m1m2 − 2m2

1 + k−1onp
+ + k+(m1 −m2)

2 − k+~q 2
⊥

]

×ψps(x, ~K⊥)ψps(x, ~K ′⊥) + [1↔ 2], (26)

where the momentum fraction is x = k+/p+ and k−1on =

(~k2
⊥
+ m2

1)/k
+. The quark transverse momentum in the

meson rest frame is given by

~K⊥ = ~k⊥ + x
~q⊥
2

(27)

and ~K ′⊥ = ~K⊥−x~q⊥. The expression for the form the fac-
tor gives the standard Drell-Yan formula once the bound-
state wave function of the constant vertex model (asymp-
totic form) is recognized

ψ∞(x, ~K⊥) =
Gps√

x(1− x) (m2
π −M2

0 )
, (28)

which is the first term in eq. (22) for g(M 2
0 ) = 1. The sec-

ond term in (22) comes from the Coulomb-like interaction.

The other factors in eq. (26) compose the Melosh rotations
of the individual spin wave function of the quarks.

The size of the meson is closely related to the square-
root mean square charge radius which is calculated as

√
〈r2ps〉 =

[
6

d

dq2
Fps(q

2)|q2=0

] 1
2

.

In sect. 4 we adjust the regularization parameter
(see eq. (35)) by fitting the pion charge radius,

√
〈r2π〉,

which has an experimental value of 0.67 ± 0.02 fm [32].
The charge radius from eq. (26) in the soft-pion limit
(Mπ = 0) using the asymptotic wave function (28), with

Γπ =
√
2mu(d)/fπ from the Goldberger-Treiman [33] rela-

tion at the quark level, results in the well-known expres-
sion

√
〈r2π〉 =

√
3/(2πfπ) from refs. [23,24]. In this case,

also the form factor (26) for q2 = 0 reduces to the expres-
sion for fπ as given in [25]. We observe that our model,
for α = 0, g(M2

0 ) = 1 and Mπ = 0 recovers the soft-pion

result, i.e.

√
〈r2π〉 = 0.58 fm.

3.2 Weak-decay constant

The leptonic weak-decay constant of the pseudoscalar me-
son (fps) is a physical quantity that depends directly on
the probability to find the quark-antiquark Fock state
component in the meson wave function [3]. Also, fps de-
pends on the short-range physics carried by the wave func-
tion when the quark and antiquark are close.

The meson weak-decay constant is calculated from the
matrix element of the axial current Aµ(0) between the
vacuum state |0〉, and the meson state |p〉ps with four-
momentum p [11]:

〈0 | Aµ(0) | p〉ps = ı
√
2fpsp

µ, (29)

where Aµ(~x) = ıq(~x)γµγ5q(~x).
The matrix element of the plus component of the axial

current is derived from the pseudoscalar Lagrangian (24),
and it is expressed by a one-loop diagram, which is given
by

ı
√
2Mpsfps = NcΓps

×
∫

d4k

(2π)4
Tr
[
γ+γ5(/k − /p+m2)γ

5(/k +m1)
]

((k − p)2 −m2
2 + iε)(k2 −m2

1 + iε)
, (30)

the plus component is used to eliminate the instantaneous
terms of the Dirac propagator.

By integration of eq. (30) over k−, one obtains the
expression of fps suitable for the introduction of the meson
light-front wave function. So, performing the Dirac algebra
and separating the poles in the k−-plane and integrating,
one gets

fps = −
√
2

8π3
Nc

∫ 1

0

dx

x(1− x) ((1− x)m1 + xm2)

×
∫

d2k⊥
Γps

M2
ps −M2

0

, (31)
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where the quark 1 has momentum fraction x. This ex-
pression is written in the meson rest-frame and we have
used the momentum fraction x = k+/p+. The free square
mass is defined in eq. (3). Note that this expression has a
log-type divergence in the transverse momentum integra-
tion which was discussed in ref. [15] and parameterized in
terms of fπ.

One can write eq. (31) in terms of the valence com-
ponent of the pseudoscalar meson wave function from
eq. (22), as

fps =

√
2

8π3
Nc

∫ 1

0

dx√
x(1− x)

((1− x)m1 + xm2)

×
∫

d2k⊥ψ(x,~k⊥), (32)

with x being the momentum fraction of quark 1. It is
enough to choose g(M2

0 ) decaying as M−η
0 for any η > 0,

to make fps finite.
In the particular case of g(M 2

0 ) = 1 the meson wave
function, eq. (22), for large transverse momentum behaves
as the asymptotic wave function, which decreases slowly
as p−2

⊥
implying logarithmic divergences in the transverse

momentum integrations of the weak-decay constant and
form factor. In refs. [14] and [15], the log-type divergent
factors in the pseudoscalar decay constants were param-
eterized in terms of fπ and the sum of the constituent-
quark masses, which in the QCD-inspired model [8] could
be identified with the ground-state vector meson mass.
Therefore, one has

fps = const

∫ 1

0

dx ((1− x)m2 + xm1) , (33)

and fps ∝ m1 + m2 [14]. In our model m1 + m2 is the
vector meson mass, and then as suggested by ref. [15], the
decay constant scales as

fps
fπ

=
Mv

Mρ

, (34)

which approximates the existing data up to the kaon and
D mesons but is not supported by relativistic constituent-
quark potential models and lattice QCD calculations, as
we have discussed in the introduction. The use of the sep-
arable regulator in the model brings this consistency. We
will return to this discussion in the next section.

4 Discussion of the numerical results and

conclusion

The present QCD-inspired model for the effective square
mass operator acting only on the valence component of the
meson wave function, eq. (2), has the canonical number of
parameters (the quark masses and α) plus two, when we
choose the regulator form factor as

g(a)(M0) =
1

β(a) +M2
0

or g(b)(M0) =
1

M2
0

+

(
β(b)

M2
0

)2

.

(35)

The form factor (a) for equal-mass quarks is the famil-
iar Yukawa form in coordinate space. The other choice
just contains the first two terms of a Taylor expansion of
g(a) for large M2

0 . In the limit of β(a) → ∞ the model
with form factor g(a) reduces to the renormalized model
of ref. [8], while by construction the form factor g(b) is
qualitatively different as it does not allow to match that
model. Nonetheless, for finite β’s, as we will see from our
numerical calculations, both form factors produce practi-
cally the same results.

The parameters β and the strength of the separable
interaction λps, eq. (18), are adjusted to reproduce the
experimental pion charge radius 0.67 ± 0.02 fm [32] and
mass, Mπ = 140MeV, for each form factor g(a) and g(b)

independently. We use a light-quark constituent mass of
384MeV (see eq. (23)) and fπ results to be 110MeV for
both separable interactions (see table 1). The somewhat
higher value for fπ, compared to the experimental value
of 92.4± .07±0.25 [11], is a common shortcoming of light-
front models of the pion when the valence wave function is
normalized to one [29,31]. The valence component appears
to have a probability of about 70% (see also [29,31]) which
brings the model results for fπ to 92MeV. In the case of
α = 0.5, the resulting parameters for the form factors are
β(a) = −(634.5MeV)2 and β(b) = (1171MeV)2.

Let us note that the known nonperturbative dynamics
of QCD is parameterized by the quark and gluon conden-
sates. The quark condensate is implicitly accounted by the
model through the values of the pion mass and weak-decay
constant by recalling the Gell-Mann, Oakes and Renner
relation: f2

πM
2
π = −(mcurr

u + mcurr
d )〈ūu + d̄d〉/2 [34].

The role of the gluon condensate within the model is
less obvious, presumably it is related to all parameters
and with the constituent-quark masses. The other im-
portant parameter is ΛQCD ∼ 0.2GeV [11] which sets
the QCD scale for the running coupling constant. Our
model is fitted to a reasonable average hadronic scale of
µ ∼ 1GeV which gives α ∼ 0.4 (compared to 0.5), from
the lowest-order evaluation of the running coupling con-
stant α = 12π/((33− 2nf ) log(µ

2/Λ2
QCD)) [33].

It would be plausible to use a running coupling con-
stant as a function of the momentum transfer in eq. (2).
However, as we are also fitting the parameters of the hy-
perfine interaction to fix the pion mass and radius and we
will be bound to introduce a momentum cut-off for which,
below it, for example, a fixed value will be used, we believe
that, after all, the results will be not strongly dependent
on the running coupling constant.

In fig. 1 we show the results for the 3S1-
1S0 meson

mass splitting, the binding energy Bps, as a function of
the pseudoscalar meson mass. We choose α = 0.5 and
the form factor regulator g(a) (the differences between the
masses obtained with the two form of regulators are less
than 1MeV). In the figure we see the dependence of the
mass splitting of qQ mesons on the pseudoscalar mass, ob-
tained by the the variation of mQ, while mq is fixed at the
values of 384MeV (solid line), 508MeV (dashed line) and
1623MeV (dotted line). In this way, we simulate the fam-
ilies of mesons with an up or down, a strange and charm
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Table 1. Results for the pseudoscalar weak-decay constants fps compared with others calculations and experimental data. The

calculations of fps for α = 0.5 with regulator form factors g(a)(M0) =
(
−(634.5)2 +M2

0

)−1
and g(b)(M0) = 1/M2

0 +
(
1171/M2

0

)2

are given in the second and third columns, respectively. In the fourth column the global estimates from lattice QCD results [18]
are shown. The experimental values for the decay constants [11,35,36] are shown in the fifth column. In the last two columns it
is given the masses of the pseudoscalars obtained with model (a) and the corresponding experimental values [11]. The masses
obtained with model (b) (not shown in the table) and with model (a) differ by less than 1MeV. The decay constants and masses
are all given in MeV. (The experimental errors in the masses are small excepting for B+

c which has a large error.)

qq f
(a)
ps f

(b)
ps fLattps [18] fexpps M

(a)
ps Mexp

ps [11]

π+(ud) 110 110 – 92.4± .07± 0.25 [11] 140 140

K+(us) 126 121 – 113.0± 1.0± 0.31 [11] 490 494

212+127+56
−106−28 [11]

D+(cd) 164 159 166± 8± 13+ 0
−15(χ log) 202± 41± 17 [35] 1861 1869

262+91
−84 ± 18 [36]

D+
s (cs) 184 178 187± 8± 15 188± 23 [11] 1961 1969

B+(ub) 118 117 135± 16+ 0
−15(χ log) – 5242 5279

B0
s (sb) 154 154 156± 18 – 5342 5370

B+
c (cb) 375 375 – – 6257 6400± 400

Fig. 1. 3S1-
1S0 meson mass splitting (Bps) as a function of

the pseudoscalar meson mass. The calculations for qQ mesons
are performed, with the regulator form factor g(a)(M0) =
(β(a) + M2

0 )
−1 (β(a) = −(634.5MeV)2 and α = 0.5), by

varying the mass mQ with mq fixed at 384MeV (solid line),
508MeV (dashed line) and 1623MeV (dotted line). The results
of the renormalized model from ref. [8] with α = 0.5 and fixed
mq = 384MeV are shown by the short-dashed line. The exper-
imental values of the mass splitting for ρ-π, K∗-K±, D∗0-D0

and B∗-B± [11] are given by the full circles.

quarks and a distinct one which has mass mQ. First, we
compare the results of the present regularized model with
the previous results of the renormalized model [8] found
for mq = 384MeV and α = 0.5. In this case, the regular-
ization increases Bps as seen in the figure. The regular-

ization procedure naturally softens the attractive part of
interaction at short distances, which should be compen-
sated by an effective increase of the strength of the sepa-
rable interaction to keep the pion still strongly bound at
its physical mass. The increase of the strength is reflected
in the increase of binding, as seen in the figure. Still the
trend of the experimental values of the mass splitting for
ρ-π, K∗-K±, D∗0-D0 and B∗-B± [11] is found.

The results of the mass splitting for mesons containing
at least one strange meson (dashed line in fig. 1) exhibit
the same qualitative behavior found for mesons with an
up or down quark, i.e., the mass splitting decreases with
the rise of the mass of the heavy quark. This should be
the case since the masses of the constituents, up-down
and strange, are very much similar, with an expected in-
crease in the mass splitting when the up-down quark is
exchanged with one strange quark which is heavier. By
rising the mass of one of the constituents for mesons with
charm (dotted line of fig. 1) the splitting increases, be-
cause the quarks become spatially closer and the binding
is expected to rise as in nonrelativistic potential models.
Also, as expected, the saturation of the binding energy
appears for large masses.

In fig. 2 we show the weak-decay constant as a function
of the intensity parameter α of the Coulomb-like interac-
tion for different mesons. The calculations are performed
with the regulator form factor g(a)(M0) = (b + M2

0 )
−1

with the parameter b adjusted for each given α between
0.1 and 0.5 in order to reproduce fπ = 110MeV. The
kaon weak-decay constant varies less than one MeV in
this interval keeping the value 126MeV (see table 1). We
show in the figure only results for D+ (solid line), D+

s

(dashed line), B+ (solid line with dots) and B+
c (dashed

line with dots). The decay constants rise with α, as the
qQ systems become more bound and compact due to in-
crease in the Coulomb-like interaction. The effect is par-
ticularly dramatic for the heavier mesons B+ and B+

c as
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Fig. 2. Weak-decay constant as a function of the intensity pa-
rameter α of the Coulomb-like interaction for different mesons.
The calculations are performed with the regulator form factor
g(a)(M0) = (β(a) +M2

0 )
−1. The parameter β(a) is adjusted to

fit fπ = 110MeV for each given α. Results for D+ (solid line),
D+
s (dashed line), B+ (solid line with dots) and B+

c (dashed
line with dots).

could be anticipated thinking within a nonrelativistic po-
tential model, where the probability to found the quarks
at the origin should increase when the attractive force is
strengthened.

The pseudoscalar meson weak-decay constant as a
function of the vector meson mass is shown in fig. 3 as sug-
gested by eq. (34). The calculations were performed with
the regulator form factor (a) and α = 0.5. In the figure
we see dependence of fps for qQ mesons with the vector
meson mass, obtained through the variation of mQ, while
mq is fixed at the values of 384MeV (solid line), 508MeV
(dashed line) and 1623MeV (dotted line). Although the
naive model of eq. (34), which presents a linear increase of
fps with Mv, gives some qualitative insight into the data,
it fails to describe the saturation and decrease of the re-
sults of the regulated model, which as expected has a fps
decreasing with the mass of the meson. The data for D+

s

is indeed below the linear curve and consistent with the
dashed curve calculated with the regulated model for sQ
pseudoscalars. There are several experimental values for
fD+ obtained by different collaborations as quoted in ta-
ble 1. In figs. 3 and 4 we just indicate the experimental
result from [35].

The values of fps for mesons with one charm quark
(dotted line in fig. 3) increase with Mv, as the system
becomes more compact up to the point that fps saturates
for Mv À mc = 1623MeV (the probability density at

Fig. 3. Pseudoscalar meson weak-decay constant as a func-
tion of the vector meson mass. The calculations for qQ mesons
are performed with the regulator form factor g(a)(M0) =
(β(a)+M2

0 )
−1 (β(a) = −(634.5MeV)2 and α = 0.5), by varying

the mass mQ with mq fixed at 384MeV (solid line), 508MeV
(dashed line) and 1623MeV (dotted line). The short-dashed
line gives fps obtained from eq. (34). The experimental values
are given by the full squares [11] (fπ and fK in order of in-
creasing values); the cross [35] (fD+) and the full triangle [11]
(f
D

+
s

).

the origin does not change anymore) while the expected
1/
√
MQ-dependence dominates for large values of Mv.

In fig. 4, the weak-decay constant as a function of the
pseudoscalar meson mass obtained in our regulated model
with form factor (a) and α = 0.5 is compared to the re-
cent global average of lattice QCD results [18]. The short-
dashed line gives a least-square fit to the experimental val-
ues of fπ and fK together with the lattice estimates for
D+ and B+ [16] given by f2

ps = (0.0065+0.014Mps)/(1+

0.055Mps+0.15M2
ps)GeV2 as given in ref. [12], where the

1/
√
Mps behavior for large masses is built in. The re-

sults for uQ pseudoscalars are in qualitatively agreement
with that fit. Our calculations for uQ and sQ pseudoscalar
mesons are in a good consistency with the global lattice
averages of the weak-decay constants, as seen by compar-
ing the solid line with the full circles for uQ mesons and
the dashed line with the full stars for sQ mesons.

To close our study of the present regulated model in
figs. 5, 6 and 7 we show results for the pion and kaon elec-
tromagnetic form factors using α = 0.5 with the model
regulated with form factor (a). The pion mean-square ra-
dius is reasonable fitted as well as the form factor up to
about 4 [GeV/c]2 as shown in fig. 5. The experimental val-
ues for kaon form factor [21,22] present large errors and
do not allow a definite conclusion as seen in fig. 6. For
completeness, we present the kaon form factor calculation
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Fig. 4. Pseudoscalar meson weak-decay constant as a func-
tion of the pseudoscalar meson mass. The calculations for
qQ mesons are performed with the regulator form factor
g(a)(M0) = (β(a) + M2

0 )
−1 (β(a) = −(634.5MeV)2 and α =

0.5), by varying the mass mQ with mq fixed at 384MeV (solid
line), 508MeV (dashed line) and 1623MeV (dotted line). The
global estimates of lattice QCD results [18] for fD+ and fB+ are
given by the full circles and for f

D
+
s

and fB0
s

by the full stars.
The short-dashed line gives a least-square fit to the experimen-
tal values of fπ and fK together with the lattice estimates for
D+ and B+ [16] as performed in ref. [12]. The experimental
values are given by the full squares [11] (fπ and fK in order of
increasing values); the cross [35] (fD+) and the full triangle [11]
(f
D

+
s

).

up to 10 [GeV/c]2. We also compare with the calculations
with the form factor (b), and we do not observe a strong
model dependence below 4 [GeV/c]2.

In table 1, we present the results for the pseudoscalar
weak-decay constants fps for π, K, D+, D+

s , B
+, B0

s and
B+
c compared to global estimates of lattice QCD results

and experimental data. The consistence with lattice re-
sults indicates that the regularized model is able to pa-
rameterize the QCD physics at short distances, in the
ground state of the pseudoscalar mesons, quite reasonably.
The pseudoscalar masses are underestimated for the heavy
mesons, as already seen in fig. 1, although the saturation
behavior of the mass splitting that the data indicates is
verified by the calculation. This problem can be overcome
by the introduction of confinement in the model [27,37].

In summary, we have shown that the suggested separa-
ble form to regulate the singular interaction in the square
mass operator provides a reasonable description of the
mass splitting between 3S1 and 1S0 meson ground states,
the weak-decay constants as found in a recent global av-
erage of lattice results [18] and the pion form factor up
to 4 [GeV/c]2. The main point here is that the model can

Fig. 5. Pion electromagnetic form factor. The results of the
calculations performed with α = 0.5 considering the regulator
form factors g(a)(M0) = (−(634.5)2 +M2

0 )
−1 and g(b)(M0) =

1/M2
0 + (1171/M2

0 )
2 are given by the solid and dashed lines,

respectively. The experimental data are from ref. [20].

Fig. 6. Kaon electromagnetic form factor. The results of the
calculations performed with α = 0.5 considering the regulator
form factors g(a)(M0) = (−(634.5)2 +M2

0 )
−1 and g(b)(M0) =

1/M2
0 + (1171/M2

0 )
2 are given by the solid and dashed lines,

respectively. The experimental data from ref. [21] are shown
by the full triangles and those from ref. [22] by the full circles.
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Fig. 7. Kaon electromagnetic form factor up to 10 (GeV/c)2.
The results of the calculations performed with α = 0.5 con-
sidering the regulator form factors g(a)(M0) = (−(634.5)2 +
M2

0 )
−1 and g(b)(M0) = 1/M2

0 + (1171/M2
0 )

2 are given by the
solid and dashed lines, respectively.

describe the mass dependence of the weak-decay constant,
revealing that the physics in this observable is dominated
by the mass of the meson itself, through the quark masses
and binding. The effective square mass operator acting
on the valence component of the light-front meson wave
function is again tested and proved to reasonably parame-
terize the dynamics of the constituents at short distances.
The present version of the model does not have explicit
confining interaction, therefore it is not able to account
for the spectra. A more sophisticated version of the model
that includes confinement was shown to describe the me-
son spectrum [27] and the pion form factor in the space
and time-like regions [38], can also be used in the future
in a regularized form to allow the calculation of the pseu-
doscalar decay constants.
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